Biomarkers for Acute GVHD

John A Hansen
Fred Hutchinson Cancer Research Center,
and the University of Washington
Seattle, WA
Disclosures

Financial Conflicts of Interest
• none

Grant Support
• P01-AI33484, “Immunobiology of Tolerance Following Hematopoietic Cell Transplantation”
• R01-HL094260, “Biomarkers in Chronic GVHD”
• R01-HL87690, “Whole Genome Association Analysis of Hematopoietic Cell Transplant Outcome”
Biomarkers in aGVHD

Goals and potential utility

- Improved diagnosis
 - lab based, objective
- Predict outcome
 - identify high risk patients
 - indication for pre-emptive or intensive therapy
- Monitor treatment response
 - guide dose adjustment and duration of IST
- Discovery
 - genes and pathways involved in pathogenesis of aGVHD
 - rationale for developing targeted therapy
Biomarkers in aGVHD

Tissue source

– Blood
 • plasma
 • WBC, PBMC, T cells
– Urine
– Tissue biopsy
 • skin
 • oral mucosa or gut
 • liver
Biomarker Approaches
(and methodologies)

• **Immunophenotyping**
 – enumeration of T cells, B cells, Treg
 – activation markers (expression of HLA-DR, CD25, FAS, etc)

• **Proteomics**
 – mass spec, discovery phase
 – antibody arrays
 – ELISA, bead-based multiplexing (*Luminex*)

• **Genomics**
 – analysis of gene expression (“transcription profile”)
The Graft-vs-Host Reaction and GVHD

Severity = **Strength** [T cell response + inflammation] \(\times \) **Duration**

[Diagram showing the relationship between clonal frequency of anti-host T cells and time post-transplant, with thresholds for different types of GVHD: Progressive GVHD, Therapy Dependent GVHD, Therapy Responsive GVHD, and No Evidence Clinical GVHD.]
Alloreactivity and GVHD

Biology of the Graft-vs-Host Reaction

- initiated by donor T cells
- activation of both adaptive and innate immune systems > acute inflammation
- pre-HCT cytotoxic conditioning therapy > gut injury
 - translocation of bacteria
 - leakage of LPS > liver injury
- all the above,
 \[\text{amplification of inflammation} \rightarrow \text{further tissue injury}\]

Clinical GVHD is a complex multi-system syndrome
Anti-host alloreactivity persists 2-3 years post-HCT

- 25% • median • 75%

- unrelated
- related

CTLp/10^6 CD3+ cells

p<0.01
p>0.1
p<0.01
p>0.1
p>0.1

pre-tx 3 month 1 year 2-3 years 3+ years

Time from transplant
Blood Lymphocytes as Biomarkers for acute GVHD

Activation and Apoptosis of Peripheral Blood Lymphocytes Early after Hematopoietic Cell Transplantation
Lin et al Blood 95:3832, 2000
Correlation between T cell apoptosis after 24-hour culture and HLA-DR expression: 36 patients studied 19-23 days post-HCT

Copyright ©2000 American Society of Hematology. Copyright restrictions may apply.
Apoptosis of Peripheral Blood Lymphocytes Early after Hematopoietic Cell Transplantation

Patients

Apoptosis of Peripheral Blood Lymphocytes Early after Hematopoietic Cell Transplantation

Lin et al Blood 95:3832, 2000

<table>
<thead>
<tr>
<th></th>
<th>% Apoptosis 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CD3+</td>
</tr>
<tr>
<td>Patients, 19-23 days</td>
<td>30.4±12.5</td>
</tr>
<tr>
<td>post-HCT (n=51)</td>
<td>(5.1-60.0)</td>
</tr>
<tr>
<td>Normal controls</td>
<td>4.0±1.5</td>
</tr>
<tr>
<td>(n=17)</td>
<td>(1.9-6.9)</td>
</tr>
</tbody>
</table>

1 stained with 7ADD+ after 24-hour culture; apoptosis of CD56+CD3- NK cells, 2.2±1.2
Apoptosis of CD4+ T cells and grade 2-4 acute GVHD (day 19-23 post-HCT, 24-hour in vitro culture)

CD4+ T cell Apoptosis Correlates with grade 2-4 acute GVHD

Summary

- increased apoptosis can be detected in freshly isolated blood
- amplified by short-term culture
- associated with T cell activation
- correlates with lymphopenia
- decreases after initiation of steroids
- recurrence may predict steroid-dependent disease

Data pending replication by independent study
Blood Plasma as a Biomarker for acute GVHD
<table>
<thead>
<tr>
<th>Protein</th>
<th>aGVHD</th>
<th>TRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td>Imamura 1994; Malone 2007</td>
<td></td>
</tr>
<tr>
<td>IL-8</td>
<td>Uguccioni 1993; Paczesny 2008</td>
<td>Schots 2003; Paczesny 2008</td>
</tr>
<tr>
<td>IL-10</td>
<td>Liem 1998</td>
<td></td>
</tr>
<tr>
<td>IL-12</td>
<td>Nakamura 2000; Mohty 2005</td>
<td></td>
</tr>
<tr>
<td>IL-15</td>
<td>Sakata 2001</td>
<td></td>
</tr>
<tr>
<td>IL-18</td>
<td>Nakamura 2000; Fujimori 2000; Shaiegan 2006; Luft 2007</td>
<td></td>
</tr>
<tr>
<td>CCL8</td>
<td>Hori 2008</td>
<td></td>
</tr>
<tr>
<td>CXCL10</td>
<td>Piper 2007</td>
<td></td>
</tr>
<tr>
<td>HGF</td>
<td>Okamoto 2001; Paczesny 2008</td>
<td>Paczesny 2008</td>
</tr>
<tr>
<td>IFNG</td>
<td>Imamura 1994; Nakamura 2000</td>
<td></td>
</tr>
<tr>
<td>TNF</td>
<td>Holler 1990; Symington 1990; Imamura 1994</td>
<td></td>
</tr>
<tr>
<td>TNFRI</td>
<td>Or 1996; Kitko 2008; Choi 2008; Paczesny 2008</td>
<td>Paczesny 2008</td>
</tr>
<tr>
<td>Syndecan-1</td>
<td></td>
<td>Seidel 2003</td>
</tr>
</tbody>
</table>
Critique of Published Data

Questions and issues

• aGVHD risk and incidence rates vary between Centers
• sample collection and processing is not standardized
• little documentation of assay sensitivity, specificity and reproducibility
• mostly case-control study designs, but selection matching criteria may be variable and/or vague
• usually some degree of missing or excluded data
• studies rarely include 2 phase discovery & validation cohorts, or randomization
PLASMA CYTOKINE LEVELS BEFORE and AFTER THE ONSET OF ACUTE GVHD

George B. McDonald et al, Seattle
(unpublished data)
Experimental design
McDonald et al

Study I

• 146 patients receiving CY/TBI for hematological malignancy (MURD, 139); cyclosporine + methotrexate prophylaxis
• blood drawn weekly to day +56, processed rapidly
• plasma levels of 11 cytokines analyzed by ELISA
Plasma cytokine level changes over 15 day interval prior to onset of grade III/IV GVHD

<table>
<thead>
<tr>
<th>Rising Levels (slope positive)</th>
<th>No change</th>
<th>Falling Levels (slope negative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1α +68±18% (p=.004)</td>
<td>IL-1-beta IL-2 IL-4 IL-10 TNFα IFNγ IL-1RA</td>
<td>TGF-b1 -43±19% (p=.002)</td>
</tr>
<tr>
<td>IL-6 +361±45% (p=.0003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sTNFRI +20±6% (p=.002)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Plasma cytokine level changes prior to onset of GVHD

<table>
<thead>
<tr>
<th>GVHD grade</th>
<th>(\Delta) IL-1(\alpha)</th>
<th>(\Delta) IL-6</th>
<th>(\Delta) sTNFRI</th>
<th>(\Delta) TGF-(\beta)1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – I (N = 16)</td>
<td>+22.8 ± 9.2% (p=.03)</td>
<td>-26.9 ± 64.7% (p=.54)</td>
<td>+27.2 ± 12.6% (p=.06)</td>
<td>+18.7±16.3% (p=.27)</td>
</tr>
<tr>
<td>II (N = 61)</td>
<td>+32.2 ±16.7% (p=.08)</td>
<td>+93.0 ±23.3% (p=.003)</td>
<td>+16.1 ± 3.5% (p<.0001)</td>
<td>-43.5±15.8% (p=.0003)</td>
</tr>
<tr>
<td>III – IV (N = 30)</td>
<td>+68.2 ±17.9% (p=.004)</td>
<td>+361.1 ±45% (p=.0003)</td>
<td>+20.2 ± 5.6% (p=.002)</td>
<td>-43.4±18.5% (p=.002)</td>
</tr>
</tbody>
</table>
Median values for plasma cytokines prior to onset of acute GVHD

McDonald et al

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Normal upper limit (NUL)</th>
<th>GVHD 0/I (N=16)</th>
<th>GVHD II (N=61)</th>
<th>GVHD III/IV (N=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1α</td>
<td>225 pg/mL</td>
<td>39.8 (.18 x NUL)</td>
<td>43.5 (.19 x NUL)</td>
<td>75.5 (.34 x NUL)</td>
</tr>
<tr>
<td>IL-6</td>
<td>0.7 pg/mL</td>
<td>15.4 (22 x NUL)</td>
<td>20.7 (30 x NUL)</td>
<td>34.9 (50 x NUL)</td>
</tr>
<tr>
<td>TNFα</td>
<td>12 pg/mL</td>
<td>7.7 (.64 x NUL)</td>
<td>6.9 (.58 x NUL)</td>
<td>12.3 (1 x NUL)</td>
</tr>
<tr>
<td>TNFRI (p55)</td>
<td>925 pg/mL</td>
<td>1308 (1.4 x NUL)</td>
<td>1163 (1.3 x NUL)</td>
<td>1161 (1.3 x NUL)</td>
</tr>
<tr>
<td>TGFβ 1</td>
<td>9445 pg/mL</td>
<td>701 (.07 x NUL)</td>
<td>424 (.04 x NUL)</td>
<td>441 (.05 x NUL)</td>
</tr>
</tbody>
</table>
Conclusions – Study I

McDonald et al, unpublished

1. Plasma levels of IL-6, IL-1a, and sTNFRI (p55) are increasing, and TGFb1 decreasing, prior to onset of clinical GVHD.

2. The slopes of plasma IL-6 levels before GVHD onset are steeper than those of IL-1a and sTNFRI.

3. Plasma IL-6 levels (but not IL-1a and sTNFRI) exceed the normal upper limit for this cytokine in healthy volunteers.

4. Plasma IL-6 level prior to onset of clinical GVHD correlates with severity of GVHD.

1 Study I did not include IL-2Ra, IL-8 or HCF
Experimental design
McDonald et al

Study II

• 160 patients transplanted for hematological malignancy
 • myeloablative and reduced intensity
 • CSP+MTX, FK+MTX, and FK+MMF prophylaxis
• Blood routinely drawn weekly to day +56, and day 80
 • day 14 after starting IST for aGVHD Rx
• Plasma cytokine levels analyzed by Luminex
 • enlarge panel of analytes (IL-2Ra, IL-8, HCF and others)
• Randomly select cases & controls for discovery and replication cohorts
 • correlated with acute GVHD, treatment response, mortality

Status: analysis pending
“A Biomarker Panel for Acute GVHD”

Blood 113:273-278, 2009

First GVHD biomarker study to include a separate and independent *discovery* and *validation* phase
Study plan

• **466 subjects** receiving allo HSCT between 2001-2006 at the Univ of Michigan

• **Excluded** patients with VOD, IPS, septic shock (15%)
 – ~70% myeloablative, ~35% unrelated donor
“A biomarker panel for acute GVHD”

Study plan

- **Discovery phase**, 42 patients selected for case-control study
 - 21 patients, grade 3-4 aGVHD
 - 21 patients, grade 0 aGVHD

- **Replication phase**, 424 patients randomly separated into:
 - *training set*, n=282; 166 GVHD (grade 0), 116 GVHD (grade 1-4)
 - *validation set*, n=142; 76 GVHD (grade 0), 66 GVHD (grade 1-4)
A biomarker panel for acute GVHD
Pczesny et al 2009

Results

• Discovery phase:
 – Antibody microarrays identified 35 of 120 plasma proteins significantly associated with severe grade 3-4 aGVHD
 – 23 of the 35 proteins selected for testing in a sequential ELIZA assay (to preserve sample)
 – 8 proteins gave p-value <.01 comparing GVHD+ and GVHD- patients
DISCOVERY PROTEOMICS
POTENTIAL GVHD BIOMARKERS

<table>
<thead>
<tr>
<th>Protein</th>
<th>GVHD-</th>
<th>GVHD+</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-2Rα</td>
<td>** ***</td>
<td>*** **</td>
</tr>
<tr>
<td>CRP</td>
<td>** ***</td>
<td>*** **</td>
</tr>
<tr>
<td>IL-8</td>
<td>* ********</td>
<td>***********</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>************</td>
<td>***********</td>
</tr>
<tr>
<td>TIMP-1</td>
<td>************</td>
<td>***********</td>
</tr>
<tr>
<td>TNFR1</td>
<td>************</td>
<td>***********</td>
</tr>
<tr>
<td>HGF</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>CA19.9</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>VEGF-D</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>IL-12p70</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>VACM-1</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>IL-10</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Angiostatin</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Eotaxin</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>IGF-1</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>FGF-basic</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>MMP-2</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Angiopoietin</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>TGFβ</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>FasL</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

Fold-change from the mean:
- 1/4
- 1/2
- 1
- 2
- 4
A biomarker panel for acute GVHD
Paczesny S et al, 2009

8 proteins selected from the Discovery phase antibody array + ELISA study for Validation

- IL-2Ra
- CRP
- IL-8
- ICAM-1
- TIMP-1
- TNFRI
- HGF
- CA19.9
Study plan

- Replication phase, 424 patients randomly separated into:
 - training set, n=282; 116 GVHD+, 166 GVHD-
 - validation set, n=142; 66 GVHD+, 76 GVHD-
- Sequential ELISA performed for 8 biomarkers
- Median values and individual AUCs determined for the training set

- GVHD+, grade 2-4; GVHD-, grade 0
- median onset, day 30
Results – Training set:

- Linear regression determined that a linear combination of 4 proteins produced the best model to predict acute GVHD

- IL-2Ra
- TNFR1
- HGF
- IL-8

Proteins failing conformation in the training set:

- CRP, ICAM-1, TIM-1, CA19.9
TOP FOUR PROTEINS IN THE TRAINING COHORT

IL-2Rα

TNFR1

HGF

IL-8

GVHD -

GVHD +
ROC Curve of the Training Cohort for Individual Proteins and Composite Panel

(Sensitivity)

True Positive Rate

False Positive Rate

(1 - Specificity)
Survival is predicted independently by GVHD grade and Biomarker Panel

P<0.001

Low, n=286
High, n=138

Grade 0-I, n=276
II-IV, n=148

Low, n=286
High, n=138
Are plasma biomarkers “ready”?

• **Clinical trials**
 – YES, candidate plasma proteins should be incorporated into prospective multi-center trials
 • adjunct or stand alone studies
 • avoid exclusions and missing data
 • evaluate specificity in patients with bacteremia, IPS, VOD, etc
 • determine time-dependent kinetics prior to onset
 • define early changes predictive aGVHD onset & severity

• **Diagnostics, preemptive therapy**
 – pending prospective validation and deeper analyses
Thank you!