Acute Lymphoblastic and Myeloid Leukemia
Pre- and Post-Disease Form

Mary Eapen MD, MS
Acute Lymphoblastic Leukemia
Acute Lymphoblastic Leukemia

- SEER
 - Age-adjusted incidence rate 1.6 per 100,000 men and women per year
 - ~60% were diagnosed under age 20
 - Overall survival ~ 65%
- Treatment
 - Chemotherapy ± irradiation
 - Hematopoietic cell transplantation
Classification of ALL

- This has prognostic implications
- Immunophenotype
 - Determine cell lineage
- Cytogenetics
- Genetic alteration/molecular marker
- This information is used to determine intensity of treatment so as to offer the best chance of survival
Classification - Cell lineage -

- Immunophenotyping is determined by flow cytometry
 - Important in diagnostic evaluation
 - Allows classification of ALL
 - B-lineage (B lymphocytes)
 - T-lineage (T lymphocytes)
 - B-lineage = pre-B and mature B ALL
 - T-lineage = T cell
Classification

- Cytogenetics
- Prognostic significance
- Common abnormalities
 - Translocations: (9;22), (4;11)(1;19), (8;14), (10;14)
 - Structural abnormalities: 9p, 6q, 12p
 - Number of chromosomes in cell
 - Hypo, hyper, tri/tetra diploid
Cytogenetics

<table>
<thead>
<tr>
<th>Cytogenetic abnormality</th>
<th>Genetic alteration</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(9;22)</td>
<td>BCR/ABL</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>t(4;11)</td>
<td>AF4/MLL</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>t(1;19)</td>
<td>PBX/E2A</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>t(12;21)</td>
<td>TEL/AML1</td>
<td>Favorable</td>
</tr>
<tr>
<td>Hyperdiploid >50</td>
<td>__</td>
<td>Favorable</td>
</tr>
<tr>
<td>Hypodiploid ≤45</td>
<td>__</td>
<td>Unfavorable</td>
</tr>
</tbody>
</table>
Prognostic Features

- National Cancer Institute risk group
 - Age at diagnosis and WBC count
 - Good risk:
 - Age 1-10 years and WBC < 50,000
 - Poor risk:
 - All others
- Cytogenetics is predictive of outcome
- Time to 1st CR: > 4 weeks of induction therapy to achieve 1st remission signals “high risk”
- Minimal residual disease (MRD)
 - At end of induction also signals “high risk”
Indications for HCT

- **1st CR**
 - t(9;22), hypodiploidy, induction failure, >4 wks to 1st CR
- **2nd CR**
 - Bone marrow recurrence <36 months from diagnosis
- **3rd CR**
 - Outcome influenced by duration of 1st CR and interval between 1st & 2nd CR
 - Induction failure
Donor and Graft selection for HCT

- When available: matched family donor is ideal
- If none, suitably matched unrelated donor
- Indications for HCT are the same for either donor type
- Graft choices
 - Bone marrow
 - Peripheral blood progenitor cells
 - Umbilical cord blood
Donor and Graft selection for HCT

- Related donor HCT
 - Bone marrow is the most common graft used
- Unrelated donor HCT
 - Bone marrow and cord blood are the most common grafts used
- With either donor use of peripheral blood graft is discouraged
 - Higher chronic GVHD translates into higher mortality
The pre- and post ALL Report Forms
Pre-HCT data

- Disease-related variables
 - Date of diagnosis
 - Predisposing condition
 - AA, Bloom, Fanconi, Down, other
 - Presence of extramedullary disease
 - CNS, mediastinum, testes
- Cytogenetics
 - If tested → list the abnormality/normal cytogenetics/not evaluable
Cytogenetics

- If ‘yes’ abnormalities identified
 - List of probable cytogenetic abnormalities provided
 - If more than 1, tick all that apply
 - If report available please attach copy
 - If your patient’s cytogenetic abnormality is not listed please use ‘other’ option

- Abnormalities can be at diagnosis or anytime prior to conditioning for HCT
 - Both are relevant
Example

- TEL AML genetic alteration
 - t(12;21) (p13;q22)
 - TEL/AML positive (+/- same report)
 - (fusion of TEL gene at 12p13 with AML gene at 21q22)
- If 3 or more cytogenetic abnormalities occur this is referred to as ‘complex’
 - Please indicate all abnormalities; if you are unsure of the number of abnormalities please list them and the CIBMTR will determine whether complex or other
Treatment pre-HCT

- Purpose of therapy
 - Induction of remission after diagnosis
 - Attain remission (1st CR)
 - Consolidation of remission
 - Maintenance of remission
 - Both steps to ensure continued CR
 - Treatment for relapse
 - Central nervous system (CNS)
 - CNS prophylaxis given during induction, consolidation and maintenance periods
Response to pre-HCT treatment

- Complete response
 - Continuous complete response (if the patient achieves CR and continues in CR)
- If not a ‘complete response’ then mark the ‘no complete response’ option
 - e.g. if ‘no complete response’ after 1st line of therapy re-evaluate after 2nd line and could achieve ‘complete response’
Response to pre-HCT treatment

- Date response achieved
 - 1st CR is critical

- Date of relapse (if relapse occurs)
 - Critical to determine interval between 1st CR and relapse

- Site of relapse
 - Bone marrow
 - CNS
 - Testes
 - Other sites
Other Laboratory Tests

- At diagnosis (Q 121 – 123)
 - White blood cell count
 - % blasts in blood
 - % blasts in bone marrow
 - Date of bone marrow examination
Other Laboratory Tests

- Q 125 – 130
- Molecular markers
 - BCR / ABL
 - TEL / AML
- Other molecular testing performed
 - Report test and results; example: MLL gene rearrangement
Disease status prior to HCT

- Based on hematological tests (Bone marrow)
 - 1st CR; if in 1st CR is the patient is in cytogenetic and/or molecular remission
 - 2nd CR, ≥ 3rd CR
 - Primary induction failure (not in CR after multiple cycles of induction chemotherapy)
 - 1st, 2nd, ≥ 3rd relapse
 - If not in remission indicate the sites of disease, cytogenetic and/or molecular test results
- Minimal residual disease (not asked now)
- When available please provide date of assessment
Post-HCT planned treatment

- Planned post-HCT therapy: this is treatment that has been planned prior to HCT and executed after HCT
 - CNS irradiation
 - Systemic therapy
 - List of drugs provided or use ‘other’ option
 - Donor leukocyte infusion
- This does not refer to therapy if the patient relapses post-HCT
Post HCT disease assessment

- Was CR achieved in response to HCT?
 - Already in CR pre-HCT and continued in CR
 - If transplanted in relapse/PIF
 - Was CR achieved after HCT?
 - Yes – date; clinical /heamatologic CR
 - Cytogenetic test results if performed including date
Post HCT disease assessment

If CR was not achieved after HCT

- Indicate any treatment given
 - CNS irradiation
 - Systemic / intrathecal therapy
 - Donor leukocyte infusion
 - Second HCT
 - Other treatment - specify
Post HCT disease assessment

- If the patient has a relapse post-HCT
 - Specify: molecular, cytogenetic or clinical/hematologic
 - Indicate presence or absence of disease by method of assessment
- Important to indicate dates of assessment
Post HCT disease assessment

- Current disease status
 - Q 58 – 63
 - If assessment is “yes” to Q 25 then you have already reported the necessary information by answering Q 26 – 41
 - If answer to Q 25 is “no” then proceed to Q 58 and provide appropriate responses
Acute Myeloid Leukemia
Acute Myeloid Leukemia

- **SEER**
 - Age-adjusted incidence rate 3.5 per 100,000 men and women per year
 - Unlike ALL, only 6% of patients with AML are diagnosed under the age of 20 years

- **Treatment**
 - Chemotherapy ± irradiation
 - Hematopoietic cell transplantation
Classification of AML
- World Health Organization -

- AML with recurrent genetic abnormalities
 - Translocation of genes b/w chr 8 & 21
 - Translocation of genes b/w chr 15 & 17
 - Inversion or translocation of genes on chr 16
 - Abnormalities of chr 11
 - Acute promyelocytic leukemia
Classification of AML
- World Health Organization -

- AML with multilineage dysplasia (leukemia in which more than 1 myeloid cell type is involved)
 - With prior MDS
 - Without prior MDS

- AML with MDS, therapy related
Classification of AML
- World Health Organization -

- AML not otherwise categorized
 - AML minimally differentiated (M0)
 - AML without maturation (M1)
 - AML with maturation (M2)
 - Acute myelomonocytic leukemia (M4)
 - Acute monocytic leukemia (M5)
 - Acute erythroid leukemia (M6)
 - Acute megakaryocytic leukemia (M7)
 - Acute basophilic leukemia
 - Acute panmyelosis with myelofibrosis
Prognostic Features

- In addition to length of 1st CR
- Chromosomal abnormalities are very important
- By analyzing cytogenetic abnormalities at diagnosis we know:
 - $t(8;21), t(15;17)$ and inversion 16 are favorable cytogenetics (low risk)
 - Complex karyotype (≥ 5 abnr), monosomy 7, monosomy 5, del (5q) or abnormalities of 3q are unfavorable (high risk)
 - All others are assigned intermediate risk
Indications for HCT

- 80-90% of children treated on current chemotherapy trials achieve CR
- In N. America
 - Those in 1st CR with matched sibling proceed to HCT
- Absence of a matched sibling – continue chemotherapy
 - 30-40% of these patients will relapse
- Alternative donor HCT is reserved for those in 2nd CR, not in remission after relapse or induction failure
Graft choices for HCT

- Related donor HCT
 - Bone marrow is the most common graft used
- Unrelated donor HCT
 - Bone marrow and cord blood are the most common grafts used
- With either donor use of peripheral blood graft is discouraged
 - Higher chronic GVHD translates into higher mortality
The pre- and post AML Report Forms

There are several questions that are common to both the ALL and AML Forms
Pre-HCT data

- Disease-related variables
 - Date of diagnosis
 - Is this therapy-linked?
 - lymphoma, breast cancer, other
 - Prior hematologic disorder
 - Date of onset and indicate from list the prior hematologic disorder
- Predisposing condition
 - AA, Bloom, Fanconi, Down, other
Laboratory Tests

- At diagnosis (Q 16 – 18)
 - White blood cell count
 - % blasts in blood
 - % blasts in bone marrow
 - Date of bone marrow examination

- Though not a lab test:
 - Q19 asks for sites of extramedullary disease at diagnosis
Cytogenetics

- If ‘yes’ abnormalities identified
 - List of probable cytogenetic abnormalities provided
 - If more than 1, tick all that apply
 - If report available please attach copy
 - If your patient’s cytogenetic abnormality is not listed please use ‘other’ option

- Abnormalities can be at diagnosis or anytime prior to conditioning for HCT
 - Both are relevant
Treatment pre-HCT

- Purpose of therapy
 - Induction
 - Consolidation
 - Maintenance
- Important to indicate:
 - Number of cycles & drugs administered
 - Dates / site of radiation
 - Response to treatment
- Indicate if remission was achieved; if not provide date of relapse
Response to pre-HCT treatment

- Complete response
 - Continuous complete response (if the patient achieves CR and continues in CR)
- If not a ‘complete response’ then mark the ‘no complete response’ option
 - e.g. if ‘no complete response’ after 1st line of therapy re-evaluate after 2nd line and could achieve ‘complete response’
Prior to HCT

- Q 152 – 155
 - Assessment of leukemia: blood tests and bone marrow test
- Important to document
 - Disease status at transplantation. This is an important determinant of how well the patient will do after HCT
Post-HCT planned treatment

- Planned post-HCT therapy: this is treatment that has been planned prior to HCT and executed after HCT
 - CNS irradiation
 - Systemic therapy
 - List of drugs provided or use ‘other’ option
 - Donor leukocyte infusion
- This does not refer to therapy if the patient relapses post-HCT
Post HCT disease assessment

- Assess best response to HCT + any planned treatment
- Provide date of response if patient was not in CR at HCT and achieved CR after HCT
- Indicate all methods that were employed and dates tested:
 - Hematologic / molecular / cytogenetic
Post HCT disease assessment

- If the patient has a relapse post-HCT
 - Specify: molecular, cytogenetic or clinical/hematologic
 - Indicate presence or absence of disease by method of assessment
 - Important to indicate dates of assessment
Post HCT disease assessment

- Please remember to provide the current disease status and date of testing
- This particularly important for those patients who relapse after HCT
 - Document what happened to patients if they were treated for their relapse
Summary

- ALL and AML are acute leukemias
- Though biologically different, data collection forms have several common features
- Some dates are critical: date of 1st CR, date of relapse (pre- & post-HCT) and response to HCT
- Documenting response to HCT particularly for patients who relapse after HCT can be challenging
I would like to thank Diane Knutson for graciously agreeing to give this presentation on my behalf.

Mary Eapen MD, MS