Cytogenetics: Nomenclature and Disease

Willis Navarro, MD
Medical Director, Transplant Services
National Marrow Donor Program

Overview

- Normal Chromosomes
 - Structure
 - Genes
- Chromosomal Disruptions
 - Types of Chromosomal Changes
- Disruptions and Disease

Structural Overview

- DNA forms a double helix
- Double helix structure is wound around histones
- DNA/histone complex then forms the chromosome structure

Cell Division and Cytogenetics

- Tissue cells of interest are grown in culture
- Cell must be "frozen" at metaphase
 - Mitotic inhibitor added
 - Chromosomes condensed
 - Cells harvested

Human Chromosome Basics

- 22 pairs plus 2 sex chromosomes (diploid number: 46) (46, XX)
- Composed of DNA plus infrastructure (histones, proteins, RNA, sugars)
- 3 groups of shapes based on centromere position, arm length

Example of G-Banding: Chromosome 11

- GTL stain: Giemsa/Trypsin/Leishman
- Chr 11 is submetacentric
- Representative ideogram
- Stained to distinguish denser and less dense areas
- Unique staining patterns for each chromosome
- Many genes coded
- Banding ≠ genes
How Do You Define a Gene?

- DNA sequence begins with a start codon; ends with a stop codon
- Amino acids (each with a 3-character code) then join to form a protein which then has a function
- There is "filler" DNA that codes for other stuff

What can go wrong with a gene?

- The correct sequence is critical to coding the right protein/protein structure
- If the chromosome carrying a particular gene is altered, then the resulting mutated protein or control elements may cause problems

What can go wrong with a chromosome?

- Constitutional vs acquired abnormalities
- Numerical abnormalities
 - Monosomy: loss of a whole chromosome
 - Trisomy: gain of a whole chromosome
- Structural abnormalities
 - Deletions
 - Inversions
 - Translocations

Monosomy X: Turner Syndrome
Constitutional Loss

Trisomy 21: Down Syndrome
Constitutional Gain
Deletion 5q
Acquired Loss

- Interstitial losses of the long arm of chromosome 5
- These losses result in large numbers of genes being lost
- Often associated with myelodysplastic syndromes and acute myeloid leukemia

Inversion (3)(q24q27)
Acquired Abnormality

- Interstitial segment inverts

Translocation t(9;22)
Acquired Abnormality

- Material is exchanged between chromosomes 9 and 22, creating a new fusion gene: bcr/abl
- Breakpoint may vary a bit such that the newly created fusion protein may be of several lengths
 - p190 (kDa)
 - p210

Deletion
Acquired Loss

- Interstitial losses of the long arm of chromosome 5
- These losses result in large numbers of genes being lost
- Often associated with myelodysplastic syndromes and acute myeloid leukemia

Inversions
Acquired Abnormality

- Interstitial segment inverts

Translocations
Acquired Abnormality

- Material is exchanged between chromosomes 9 and 22, creating a new fusion gene: bcr/abl
- Breakpoint may vary a bit such that the newly created fusion protein may be of several lengths
 - p190 (kDa)
 - p210
Recap of Basic Abnormalities

• Loss or gain of entire chromosomes
 – Monosomy
 – Trisomy

• Structural
 – Deletions
 – Inversions
 – Translocations

• Plus more uncommon types of abnormalities
 – Derivative chromosome (der)
 – Used when only one chromosome of a translocation is present or
 – One chromosome has two or more structural abnormalities
 – Dicentric chromosome (dic) [chromosome has two centromeres]
 – Duplication (dup) [duplication of a portion of a chromosome]
 – Insertion (ins)
 – Isochromosomes (i) [both arms are the same]
 – Marker chromosome (mar) [unidentifiable piece of chromosome]
 – Ring chromosome (r)
 – Hyperdiploidy: greater than 46 chromosomes

Interpreting Cytogenetic Reporting

• In sequence:
 – the overall number of chromosomes identified
 – sex chromosomes
 – affected chromosomes
 – type of abnormalities described in shorthand
 – chromosomal band location
 – In brackets, the number of cells with a given karyotype

• Examples
 – 46, XX; t(9;22)(q13;q22) [20]
 – 47, XY; +21 [12]
 – 46, XX; inv 16(q13; q21) [20]
 – 45, XY; -5 [18]; 46, XY [2]
 – 46, XY; -5 (q13) [4]; 46, XX [16]
Cytogenetic Pioneers

Barbara McClintock
- First genetic map of maize
- Genetic and physical characteristics correlated
- Her work helped explain how cells that share the same genome can have different functions
- Nobel Prize for transposons in 1983

Janet Rowley
- Hypothesized that leukemias might contain non-random genetic abnormalities
- 1972: Showed that recurring chromosomal abnormalities occurred in leukemia and sometimes defined the disease’s characteristics

Leukemias and Cytogenetics
- Certain morphologic subtypes were known to have distinct prognoses and/or clinical syndromes (AML-M7)
- Examples:
 - acute promyelocytic leukemia (M3)
 - high bleeding risk due to coagulopathy but favorable prognosis
 - t(15;17)(q22;q12)
 - AML, subtype M4eco
 - Favorable prognosis
 - inv(16)(p13q22)
 - Chronic myeloid leukemia
 - t(9;22)(q34;q34)
 - Some myelodysplastic patients—typically older women—had a pattern of normal platelet counts and a favorable prognosis
 - 5q syndromes

Risk Stratification for Acute Leukemias Using Cytogenetics
- Previous to Janet Rowley and others’ observations about cytogenetics and prognosis, leukemias were only categorized by morphology under the microscope
- AML
 - Favorable Risk
 - inv(16)
 - t(8;21)
 - t(15;17)
 - Intermediate Risk
 - All abnormalities not in favorable or high risk categories, plus normal
 - Poor Risk
 - Monosomy 5 or 7
 - t(19;22)
 - Complex (3 or more abnormalities)
- ALL
 - Favorable Risk
 - Hyperdiploidy
 - t(1;19)
 - t(12;22)
 - Intermediated Risk
 - 5q-
 - 7q-
 - t(9;22)
 - Poor Risk
 - Monosomy 5 or 7; 5q-
 - t(9;22)
 - Complex (3 or more abnormalities)

Pre-TED Form (1): Cyto data

- First three AML cyto abnormalities are associated with favorable prognosis (AML/ETO, e.g., refers to the two genes involved in the leukemia)
- AML with 11q23: often associated with previous topoisomerase II-based chemotherapy (MLL gene is located at 11q23); usually t(9;11) (p22;q23)

Pre-TED Form (2)

17q CHRONIC MYELOGENOUS LEUKEMIA (CML)
Philadelphia chromosome+, Ph+, t(9;22) (q34;q11), or variant OR bcr/abl+

- In the pre-TED example above, Ph+ refers to the cytogenetics; bcr refers to the detection of bcr/abl gene product, usually by PCR or FISH

Form 2100 Chimerism Studies

- Note that for collection of chimerism data, PCR is not an option and should not be recorded under “other”
Disease Status: FISH

- For data purposes, FISH is a subset of cytogenetics (cellular level)
- Molecular evidence would be PCR and similar

The Future of Prognosticating Outcomes in Acute Leukemia

- May be based on the molecular biology of the leukemia as ascertained by
 - PCR
 - FISH
 - Microarray data/gene profiling
- More and more critical to understand the molecular basis as more targeted therapies become available
 - Anti-bcr/abl drugs: imatinib and 2nd generation drugs
 - Anti flt3 etc.

Summary

- A variety of chromosomal abnormalities can be characterized and described using cytogenetics
- Non-random chromosomal alterations occur, can define the disease (e.g. APML), and can have important prognostic value
- Not all genetic abnormalities can be seen using cytogenetic techniques (e.g. normal cytogenetics in AML)
- Newer techniques (polymerase chain reaction [PCR], fluorescent in-situ hybridization [FISH]) can assist in searching for occult genetic aberrations

Web References